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AbslracL Far a kth-order singular Lagrangian the presymplectic equalion plus lhe differ- 
ent 'mth-order differential equation' conditions that a n  be mnsidered m Ihe Lagrangian 
space yield different dynamics which are studied. ?his leads to a new clauification of 
the constraints. ?his study is also performed in the 'intermediate formalisms' which 
Can be defined between the Lagrangian and the Hamiltonian ones; the mrresponding 
classification schemes are then related. 

1. Introduction 

This paper deals with the dynamics constructed from a higher-order singular La- 
grangian function. In order to make the ideas clear, let us first explain the relevant 
features of the first-order Lagrangian case. 

For a first-order singular Lagrangian L the Euler-Lagrange equations of motion 
for a vector field X in the velocity space T(Q) can be written as the couple of 
equationst 

(the presymplectic equation) and 

(the second-order condition). Therefore one can apply the machinery of the presym- 
plectic formalism and in particular its stabilization algorithm [ll] to the Lagrangian 
formalism, introducing the second-order condition in a further step [lo]. The first 
step yields a submanifold P C T( Q)  where the presymplectic equation has solution; 
the second step results in a submanifold S c P and a vector field tangent to S, 
which are a solution of the Euler-Lagrange equation. But such submanifold S is not 
maximal, and, in contrast with the presymplectic constraint algorithm, its construction 
from P is not algorithmic. 

t The notation I m a n s  'equality on the submanifold s' (Dirac's weak equality). When we state a 
propeny mnceming a weak equality, it is understood to hold only at the points of S .  Since S plap  no 
role in what follows it will be suppressed. 
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An alternative approach which avoids this asymmetric situation can be followed 
through the concept of vector field along a map. There exists a vector field K 
along the Legendre’s transformation FL, such that the Euler-Lagrange equation is 
equivalently written [12] within a single equation for X: 

T ( F L ) o X =  K .  (1.3) 
Then a stabilization procedure can be performed, following the lines of [13, 141, in 
order to determine the (maximal) constraint submanifold and the dynamical fields 
of the Lagrangian formalism. Moreover, this procedure is strongly related to the 
Hamiltonian stabilization algorithm, since application of K (as a differential operator) 
to the Hamiltonian constraints yields the Lagrangian constraints [2, 191. 

In spite of this, the consideration of the single presymplectic equation (1.1) has a 
certain interest. Indeed the constraints arising from it-the preympleclic comfraints- 
obviously are constraints of the ‘full dynamics’ given by the equation of motion (1.3). 
In general, when the second-order condition is added to the presymplectic equation 
more constraints appear. Then, one can find a characterization of the presymplectic 
constraints: they are just the FL-projectable constraints of the ‘full dynamics’ [18]; 
that is to say, they can be obtained as FL’(+), where q5 runs over the secondary 
Hamiltonian constraints. Therefore the ‘non-presymplectic constraints’ are not FL- 
projectable; indeed they appear when some arbitrary functions of the Hamiltonian 
dynamics are determined through the stabilization algorithm [19]. 

Therefore the classification of the constraints upon their presymplectic or non- 
presymplectic ‘origin’ gives a deeper insight on the structure of Lagrangian constraints. 
Moreover, the knowledge of their projectability is useful when studying the existence 
of Noether gauge transformations [15]. 

When a kth-order singular Lagrangian is considered the situation is more involved 
because: 
1. There appear k - 1 intermediate spaces Po 2 PI - . . . Pk- l  %’ Pk between 

those of Lagrangian (Po)  and Hamiltonian (Pk) formalisms, where eo,. . ., 
are the ‘partial Ostrogradskii transformations’ [3, 161. All these spaces have their 
own dynamics, which are given by vector fields IC, along the maps a,; if L is 
singular, there are also the corresponding constraints and arbitrary functions [16]. 

2. If L is singular, then 2( k - r )  different dynamics can be constructed depending 
on the different ‘higher-order conditions’ to be considered in each space PT, for 
0 < r < k -  1. 
In this paper we define and study these different dynamics and obtain some re- 

lations between the constraints depending upon their ‘origin’, that is to say, which 
mth-order condition is required to obtain them. Generalizing the first-order La- 
grangian case we find a relation between the ‘origin’ of the constraints and their 
projectability through the partial Ostrogradskii transformations; (it is h o w n  that this 
projectability is also related to the determination of arbitrary functions [16]). 

lb perform the analysis of the ‘mth-order dynamics’ we have also converted its two 
equations into a single one of type (1.3), which is treated as a ‘linearly constrained 
dynamical system’ of references [13, 141, whose machinery can be applied. These 
papers deal geometrically with a general type of singular differential equations, which 
includes all the constrained systems deduced from singular Lagrangians. 

This work relies on our paper [16] where some geometric structures and dynamics 
for higher-order Lagrangians have been defined. We follow the notations and con- 
ventions in this paper. Some of our previous results and notation can be found in 
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appendix A On the other hand the proofs of section 3 are somewhat involved, so 
we have collected some auxiliary results in appendix B, in order to make the paper 
more readable. 

We also assume a basic knowledge on vector bundles [l, 91, vector fields and 
sections along maps [4] (see also [6, 121) and higher-order tangent bundles [20, 221 
(see also [8, 17, 211, where higher-order Lagrangians are studied). 

The paper is organized as follows. Section 2 contains the definition of the mth- 
order dynamics in the intermediate spaces. This dynamics is formulated into a single 
equation in section 3, from which some relations between the different constraints 
are obtained in section 4. In section 5 we discuss four examples which show different 
possibilities for the structure of constraints, and we compute which 'order condition' 
is needed to obtain them. Section 6 is devoted to conclusions, and finally there are 
two appendices with previous and auxiliary results. 

2. Dynamics with the mth-order condition 

Let us recall that our notations and previous results are explained in appendix k 

rem 6] 
The equation of motion for a vector field X, in P, (0 < r < k - 1) is [16, theo- 

T(a,) o X ,  2 IC, .  (2.1) 

This is an equation both for the submanifolds S C P, where the motion can take 
place and the vector fields X, on P, which are tangent to S. 

The integral curves of X, correspond to solutions of the Euler-Lagrange equa- 
tion and therefore the coefficients of 8 / 8 4 ' ,  . . . , 8 / 8 ~ ~ ' - ~ - '  in X ,  are perfectly 
determined: q l ,  . . ., q?'-'-' . Thus, this vector field satisfies the (2k - r)th-order 
condition, which can be written 

(2.2) . ? k - 2 - r  T(o;i:\:L) 0 VY,) 0 X, = 3 0 Yr.  

Indeed, the equation of motion (2.1) is equivalent to this condition together with the 
presymplectic equation 

n ..Y - A P  (7 a\ 
a'I. Y ,Lr 2 "UI . .  (".-'I 

As done with first-order Lagrangians one may consider the presymplectic equation 
only and perform the presymplectic analysis on it [17]. For a regular Lagrangian the 
presymplectic equation already implies the (2k  - r)th-order condition [16, proposi- 
tion 7l, but for a singular Lagrangian this result is no longer true. However: 

froposirion I. The presymplectic equation (2.3) in P, (0 < T < k - 1) implies the 
( T  + 1)th-order condition for X,. 

proof. This is a consequence of lemma 1 in appendix B. 0 
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Thus we are faced, for T + 1 < m < 2 k  - T ,  to the study of the mfh-order 
dynamics in the intermediate space P,: its solutions are the vector fields X ,  in P, 
satisfying the presymplectic equation (2.3) and the mth-order condition 

(2.4) 
ox, j m - 2  02k-1-r T(oZI:-r) 0 T(r,) m-1 O Y r .  

In general, these 2( k - T )  dynamics are not equivalent. The cases m = 2k - T ,  P + 1 
correspond to single equations (2.1) and (2.3s respectively. 

In references [13, 141 a unified framework has been presented to deal with various 
constrained systems. We shall show in the following section that this framework also 
includes the mth-order dynamical formalisms just defined, which can be formulated 
within a unique equation instead of two. 

Let us finally remark that for the Hamiltonian space Pk the maximal order that 
can be considered is kth, and the presymplectic equation on the primaty constraint 
submanifold Pp' already implies it. 

3. Equations of motion for the mth-order dynamics 

Proposition 2. The equations of motion of the mth-order dynamics, for 2k - P 2 
m 2 k + 1, are equivalent to 

T(a,,2k+l-m) 0 xv = ~ ~ , , , k , l - , .  (3.1) 
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Conversely, if X, satisfies (23) and (2.4) then (3.1) holds. 'RI this end the char- 
acterization in proposition 7 is used to show that T( ar,2k+l-m) o X ,  is Kr,2k+l-m 
(on a certain submanifold): 

t T(a,,zk+i-m)oR2~+1-, o(T(a,,2k+i-m)oX,) = Q T o X ,  

= dE, 

Proposition 3. The equations of motion of the mth-order dynamics, for k 
r + 1, are equivalent to 

m > 

Proof. This equation implies (2.3): 

0 , o  X, = !T(a7,,-i) 0 nm-i ~T(a.,,-i) 0 Xv 

'T(a,,,-i)adE,-ioa,,,-i 

= dE, 

where (B.2). (3.2) and (B.3) have been used. On the other hand, by lemma 1, 
T(aF,m-l) o X, satisfies the mth-order condition. Then, by lemma 2, X, also 
satisfies the mth-order condition. 

Conversely, let us deduce relation (3.2) from the equations of motion of the 
mth-order dynamics. First notice that, for m = r + 1, (3.2) is nothing but the 
presymplectic equation. Therefore only the case m > r + 2 is to be considered. 
From the presymplectic equation one has, using (B.2) and (B.3). 

*T(a,,,-l)o (Qm-l O T ( ~ , , , - ~ ) O X ,  - dE,-, o . ~ . . , - ~ )  = 0. 

Since X, satisfies the mth-order condition, T ( O , , ~ , - ~ )  o X, also satisfies it. By 
0 

Theorem 1. For each intermediate space P,. (0  < r < IC- 1) and integer m ( r + l  < 
m < 2 k  - r )  there exist a vector bundle T ~ , :  F,, - PF, a morphism of vector 
P,-bundles A?,: T( P,) - F,,, and a section up, of F,,, such that the equations 
of motion (2.3) and (2.4) for a vector field with the mth-order dynamics in P, are 
equivalent to the single equation 

lemma 4 the expression in parentheses is zero, and thls is equation (3.2). 

A,, o X ,  2 uvm. (3.3) 
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The same is true for the Hamiltonian formalism considering m = k and the corre- 
sponding vector bundles on the base Pi1) = ak- l (  Pk-]), provided it is a submanifold 
of Pk and the Hamiltonian formalism can be defined on it. 

The various dynamics of P, are naturally related by P,-morphisms F,,,,, -+ 

F,, (r+ 1 < m 6 2k- 1 - r). 
The various dynamics with the mth-order condition are naturally related by P,- 

homorphisms F,., - P, x u ,  F,+l,m (where 0 < T < min{m - 2 , 2 k  - 1 - m} if 
m # k, 0 < r <  k- 1 if m = k). 

These morphisms yield the following commutative diagrams: 

A,, 

T(P,) &Fr,,+i- F!,, 

1 // 
P, 

(3 .5a )  

( 3 . 5 6 )  

( 3 . 5 c )  

where A,, is regarded as a morphism of vector P,-bundles T( P,) - F,, and U,, 
as a section of F?,,,. Thus, according to the preceding propositions, the equations 
of motion tor the mth-order dynamics are equivalent to (3.3). It is clear that the 
various dynamics in P, are related by morphisms between the vector P,-bundles 
T(P,), Fr,zk-r, . . ., F,,,+i: 
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since their compositions yield the A,, and they transform the corresponding sec- 
tions uTm. 

On the other hand, since the vector bundle F,., is the inverse image by partial 
Ostrogadskii transformations of a vector bundle depending on m and not on r, and 
the spaces P, are related through the partial Ostrogadskii transformations, there are 
natural isomorphisms F,, - P, x a v  F,,+l,m. 

The particular statements concerning the Hamiltonian formalism (where P = 
0 

The data (P,. F,, , rrm, A,, , U?,) constitute a linearly constrained system 

m = k) can be easily checked. 

(13, 141, whose equation of motion (for a vector field) is (3.3). 

4. Relations between the constraints 

The morphisms relating the various dynamics imply the following results (see also 
[13, 141). Let S,, c P, be thejinal constrainr submanifold of the mth-order dynamics 
in P,; that is to say, the subset of P,., assumed to be a closed submanifold, of points 
by which there pass solutions of the equation of motion. Let C,, c Cm( P,) be the 
ideal of functions vanishing on S7,. Then: 

Proposition 4. If {, is a path in P, solution of the (m  + 1)th-order dynamics, 
then it is a solution of the mth-order dynamics. Therefore, ST,,+, c S,, and 
cm c C,,,+l. 

This result was expected since the ( m + l  Jth-order dynamics is a restriction of that 
of mth-order. The proof is similar but simpler than that of the following proposition. 

Now let CFRJ := C,, n af(Cm(PTtl)) be the subset of a,-projectable con- 
straints of C?,. 

Proposition 5. Let be a path in P,. and let = m7 o {, be the corresponding 
path in P,tl. Then c, is a solution of the mth-order dynamics if and only if tT+, 
is. Therefore, o,(S,,) c ST+,,, and af(C,+,,, J c Cy:’. 

PrmJ 
mmmutative diagram yields 

Suppose that {? is a solution. With the notations in the theorem, its second 

A,,, , ,  O L + I  = A,,, , ,  o T ( a r )  O L  

- - Urt1 .m 0 0 7  O F ,  

- c r t l , m  o {vtl. 
- 

Similarly one shows that if {,+, is a solution then cv is, using the linear isomorphisms 

Then the relations between the final constraint submanifolds and the ideals of 
F,,,, * F,,,,,,,. 

constraints are easily deduced. 0 
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In fact the relations between the constraint submanifolds are m e  at each level of 

The following diagram shows all the relations established between the constraints: 
the stabilization algorithms of these dynamics [14]. 

e: 
Cr,m 3 CP'OJ r,m 3 a;(C r + l , m )  - C T t 1 , m  

n n n n 

n 
, cproj  e: 

cT,2k-T-l  ~ , 2 k - ~ - l  3 a:(C7+1,2k-r-1)  - c ~ + 1 , 2 k - ~ - 1  

' 7 , 2  k -7 

Proposition 5 can be improved under additional hypotheses: 

Proposition 6. Assume moreover that S,,,,, c a,(P,) c PTtl are closed sub- 
manifolds. Then a;'(STt1,,,) = S,,, a,(S,,) = S,,,,, and C,, is the ideal 
generated by a ; ( C ~ , , , , , ) .  

Froof. The inclusion ~ Z ; * ( . S ~ + ~ , ~ )  3 S,, is already known. Now let I E 
a;'(Srt1,,), and <?+, a solution passing by I' = a,(.). There is a path E ,  
passing by z such that = av o E,. By proposition 5, tT is a solution of the 
mth-order dynamics, thus z E S?,. The same argument proves the second equality. 
Finally, the relation between the constraints follows from the relation between the 
submanifolds. 0 

Therefore, in the row corresponding to the mth-order dynamics in the preceding 
diagram the horizontal inclusions are equalities. Let us callpresymplectic constrainfs of 
P, the constraints arising from the presymplectic equation; therefore, those in C,,,+,. 
Using proposition 4 we conclude that: 

Corollary. If Sr+,,?+, c a,( P,) (in other words, the constraints defining aT( P,) c 
Prtl are presymplectic constraints) then the conclusions of proposition 6 hold for 
each m. In particular, the pull-hack through ay of all the constraints in PTtl 
(Crt1,2k-v-1) generates CT,2k-T-l; and the pull-back through a, of the presymplec- 
tic constraints in P7,! (Cr+l,Tt2) generates C,,,,,, thus it may include presymplectic 
and non-presymplectc constraints. 

Now all the horizontal inclusions in the preceding diagram are equalities. 
Notice. that the hypothesis in the corollary does not hold in general. The primaly 

mnstraints appearing by the compatibility condition of the equation of motion (2.1) 
are those defining t9e submanifold a,(Pr-,)  c P, [16, proposition 91. On the 
other hand, using that K e r T ( a , )  c Kern,, it can be shown that the primary 
mnstraints appearing - by the compatibility condition of the presymplectic equation 
(2.3) are x: := P E,, where the vector fields f;, constitute, in addition to a 
frame of KerT(a,r:a frame for Kern,.  



Singular Lagrangian dynamics 1997 

5. Examples 

Here we consider four second-order singular Lagrangians and perform the constraint 
analysis in the spaces Po % T3Q (Lagrangian formalism), Pl (intermediate formal- 
ism), and Pz % T(TQ)' (Hamiltonian formalism), considering also the different 
order conditions that can be imposed on each space. The first example is done in 
more detail. The procedure followed is similar to that of [18] for first-order La- 
grangians. 

Of course, if only the maximal-order condition is to he considered then the results 
of [16] can be applied. Indeed, it is easily checked that if the Dirac Hamiltonian 
analysis is first performed and the intermediate evolution operators IC, and KO are 
applied to the Hamiltonian constraints, then all the constraints (of the maximal-order 
dynamics) are obtained as given in the examples. 

We want to point out that all the examples satisfy the conclusion of the corollary 
to proposition 6 for T = 0, but the third one does not satisfy its hypothesis. We do 
not know whether this hypothesis can be weakened. 

fiumpk 1. L(zo,z1,z2) = +xlxl .  

(a) Lagrangian formalism (in Po). We need w, = dz' A dx' and E, = iz'z'. Lett 
X ,  = Aoa, + . . .+ A3a3 be the dynamical field, with Ai(zo:.  . . ~ z3)  functions. The 
primary constraints are obtained by requiring ix,wo Y dE,, i.e., A'dz' - A'dz' = 
x'dx'. 
(i) Presymplectic equation. It determines Ao = z1 and A' = 0, therefore there are 

no constraints and the dynamical field is X ,  = zlan + A28 ,  + A3a3. 
(ii) Second-order dynamics. We previously set An = zl, but this is already satisfied 

by the solutions of the presymplectic equation. Therefore there are no constraints 
and still X, = +'a, + AZa2  + 

@)Third-order dynamics. Now the dynamical field is looked for in the form X, = 
z'a, + +?al + AZa2  + A3aa,. Quation ix,wo IT dE, implies that z2 Y 0. In 
other words, 4; = z2 is the primary constrain: and the dynamical field is X, Y 
.'a, + A2a2 + A3a,. The stability of this constraint imposes X ,  '4; Y A' Y 0, 
which determines X ,  E "'ao + A3a3 and no more constraints. 

( ivjhi i  dynamics. F e  firsi set X ,  = z%, + . , . + xsa2 +- k3a3. Equation ix,wo E 

dE, produces the primary constraint 4; = z2. Its stability is the secondary 
constraint 4; = X, . 4; = z3, and the  stability of 4; only determines X, . 
4; Y A3 '5 0. Therefore no more constraints appear and the dynamical field is 

@) Intermediate formalism (in Pl). The partial Ostrogadskn transformation 
q, :Po -+ Pl is defined by p o  = z1 (which will be the primary constraint of the 
full dynamics), and w1 = dz' Adp, and E, = ( p o  - 5x jz . 

Let X ,  = Aoa, + Ala,  + AZa, + C,ao be the dynamical field. The primary 
constraints are obtained by requiring i x , w l  E dE,,  i.e., Aodp, - C,dxn Y zldp, + 
( p ,  - x')dz'. 
(i) Presymplectic equation. It is known that A, Y z1. Moreover, CO = 0 and 

vi , I  = 2' - p ,  k,!he piiiiiiiji siisii~iir. XOW XI 2 2'8, + Ala,  + A'B,. 
Imposing the stability of 4; leads to XI . 4; = A' Y 0, which finally determines 

x, xlao. 

1 1  1 

x, "la, t A Z ~ ? .  

t w put ai = alaz '  and ai = alap,. 
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(ii) Full dynamics. Now X, = zlao + z28, + A2a, + C,ao, and also CO = 0 and 
q3; = d - p, Y 0. The stability of 4; is the secondary constraint 4: = X, .+; = 
x2 whose stability determines A' Y 0 and the dynamical field XI z zla,. 

(c) Hamiltonian formalism (in Pz). The partial Ostrogadskii transformation a,: PI + 
P, is defined by pi1 = 0, which gives the primary Hamiltonian constraint 0: = p,. 
Now E, = If = ( p o  - which gives a secondaly constraint q3; = z1 - p,, 
already stable. The dynamics is given by X, = zlao. 

Notice that the Hamiltonian constraints are second class. Since one of them is 
primary, the secondary constraint 4; of P, is not a,-projectable [16], and therefore 
it was expected to be non-presymplectic. The same applies to 4:. On the other 
hand, as said before, we have IC, . @; = +:, and KO ' 4 :  = 4;; this also holds in the 
foiiowing exampies. 

Tb summarize, we have the following scheme, where the arrows denote pull-back 
through partial Ostrogadskii transformations: 

1.. *Ln C^I, :^" ...."-..,-" ... ̂  ....I.. ":..- .I.- ^*.I... F..,, .....-:....., --Ao- 
111 "LC LulluwlrLg CX'iLllplc' w c  ullry grvc LllC L U I O L I ' l I I I L >  UI  u1.S L U I I - I I I M L I I I ~ I - V I Y C I  

condition-dynamics, and their classification like in the preceding example. 

&ample 2. 

(a) Lagrangian formalism: We now look for a dynamical field X, = A'a,, + . . . + 
A38,, + Boa,, + . , , + B3aV3. The constraints are 4; = -z2,  4; = -z3, 4: = y2 
and 4; = y3. 
(b) Intermediate formalism: 4; = -pya, +2 - - -z2, 4: = yl + pro and 4; = y . 
(c) Hamiltonian formalism: 4; = p,,, 4; = -pya, 4: = yO-p,, and 4; = y'+pz0. 

Here all the Hamiltonian constraints are also second class, and then one 'maximal- 

L ( z o , z 1 , z 2 , y o , y 1 , y 2 )  = $ z 2 z 2 + z 2 y 0  [SI 

2 

Order' mnstrzint i!! P ,  and- Po B expected-. n.e reso!t b: 
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Erampie 3. 

(a) Lagrangian formalism: 4; = x3 and +A = y3. 
(b) Intermediate formalism: 4; = x2 + p , ,  and +! = yz - p z , .  
(c) Hamiltonian formalism: 4; = x1 - p , ,  and +; = psi. 

As said before one finds here that the presymplectic equation in Po and P1 does 
not produce any constraint. Both primaly Hamiltonian constraints are second Class; 
therefore projectable constraints are not expected. This is true since the constrain& 
of Po and Pl arise only from the maximal-order condition: 

L(xo,x',x2,yo, y', y2) = x1y2. 

Example 4. L(xo,x',x2) = x2 
(a) Lagrangian formalism: There are no Lagrangian constraints. 
(b) Intermediate formalism: The only constraint is 4; = pa. 
(c) Hamiltonian formalism: 4; = 1 - p ,  and 4; = p , .  

Since the two Hamiltonian constraints are first class the secondary one gives through 
ai the only constraint in Pl, which is presymplectic: 

6. Conclusions 

We have studied the dynamics in the Lagrangian, Hamiltonian and, in general, inter- 
mediate formalisms in the framework introduced in [16] for higher-order Lagrangians. 
These dynamics are constructed depending on which 'mth-order differential equation' 
condition is required; for singular Lagrangians there appear different dynamics and a 
new classification scheme of the constraints is thus obtained. 

We have shown that all the dynamics herein defined have an intrinsic formulation 
by means of a single equation. This approach eases to relate the classification of the 
constraints with their projectability through the partial Ostrogradskii transformations. 
This is a clear way to show how the constraints appear in the formalism according 
to some specific dynamical requirements. The best result is obtained under some 
hypotheses (proposition 6); then the pull-backs (through partial Ostrogradskii trans- 
formations) of the mth-order constraints are just the mth-order constraints, and the 
non-projectable constraints are just those arising from the highest-order condition 
that can be considered. 
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These refinement in the classification of constraints in higher-order theories could 
be useful-as they are in the first-order case-in the obtention of Lagrangian gauge 
transformations. 
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Appendix A. Previous results 

Here we present some previous results and notation from reference !16j: 
We consider an ndimensional differentiable manifold Q with coordinatest q = 

qo, and its higher-order tangent bundles T'Q, with natural coordinates ( q n , ,  . . ,q') 
A kth-order Lagrangian is a function L E C m ( T k Q ) .  The Jacobi-Ostrogradskii 
momenta are 

and satisfy 

(k i j  

where d, = E, q'+'a/aq'. 
The intermediate space P, (0 < T < k )  can be defined, with coordinates 

(90,. . . , qZ"1-7.. , p a , .  . . ,pT-,). Then Po E T?'-' Q and Pk E T'(Tk-' Qj. We 
set 7,: P, - TZk-'-' Q for the natural projection. 

Q satisfies it. That is to say, 
A tangent vector vz E T,(P,) satisfies the mfh-order condifion if its projection 

to T""-1-7 

(-4.3) 

where 0 ; :  T3Q -+ T'Q is the canonical projection and js:TatlQ i T(TSQ) is the 
canonical embedding. 

i ne  pariiai Ostrogradsicii transformations a,: Py + r7+' can be introduced, with 
local expression 

2 0 2 k - 1 - 7  T ( O ~ : ; - ~ )  o T(7,). uz = jm- m-1 o r , ( z )  

-... * 

; P O ,  . , , > ~ ? - i >  Pr) .  0 , , , , , q 2 k - 2 - r  (A.4) 2 k - i - v .  
a,(qO, . . . , q  9 PO?. ' .  > Pr-l 1 = ( Y  

For 0 < T < s 6 k we also use P, - Ps, defined as the composition 

a,, := a,-, 0.. . 0 a,. ( '4.5) 

The 'total' Legendre-Ostrogradski transformation is therefore FL = m o k :  Po + Pk. 

t Indices of mordinates are always suppressed 
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With ark we construct the exact 2-form W? := Q ; ~ ( W ) ,  where w = wk is the 
canonical symplectic form of T*(Tk-'&). Its local expression is 
wv = dqo A dp, + . . . + dq'-' A dp,-, + dq' Ad@, + . . . + dqk- '  A de,-, (Ah) 
and by inner contraction it defines a morphism of vector bundles 

On the other hand, in P, (0 Q T Q IC - 1) there is the energy function E,, locally 
given by 

E,('?',. . . ,Pr- l )  = PO'?' +.  . . + P , - 1 q r + P , p " + '  + .  . .+@&l '?  - L(qo, .  . . , q  1. 

We have E, = a;(E,+l). 

n,:T(P,) +T(P,)*. (A') 

k k 

( A 4  

Now we consider the intermediate evolution operator li,, which is the only vector 
eei(j long a ,  ai@ying ihe foiio.w.ing rwo wndiiions ji6, 'uieoier, 4jr 

(A.9) 

( A N  

. 2 k - 2 - r  T h r + i )  0 KT = 3 

a: (iKVuT+') = ' T ( a , )  o n F + ,  o li., = dE,. 

0 7 ,  

In coordinates it reads 

t 8 4 0  a q 2 k - 2 - ?  
l a  a IC, = q - + , . . + q 2 k - 1 - r  

a 
(;gL);, (:'?: 

,)&+...+ ( Z  - - P v - 1  ) ap,' + - -t - - p  

(All) 

(AJ2) 

('4.13) 

(A14) 

It is a differential operator on the functions in P,+]: 

The different evolution operators are connected by 

Then for 0 < T < s < k we define K r S :  P,. - T(P,) by 

It is a vector field along aTa and therefore it is identified with a section of P, x ~ , ,  

It is assumed that the a, have the Same constant rank 2kn- m and that P$)l := 
a,( P,) is a closed submanifold of P,+] locally defined by m independent primary 
constraints The primary Hamiltonian constraints-those defining Pi ' ) -can  be 
chosen to not depend on p,, . . . , p i , - ? .  Then the primary constraints of P, can be 

There is a (local) Hamiltonian function in Pk, which can be chosen of the partic- 

_. KF . f := (df 0 ET> f < r ) ~  

T(a , )  o 1iT-' = li, o a?-'. 

A.,, := li-3-l o ar,s..l = T(a,+,, ,)  o li,. 

T(P,). 

o'iiaiited by applying I<? io ihe piiiiiaiji wfistiaifiis of Prtl [16, pia@tkiii 91. 

ular form 
k - 2  

H = E ,  = p;q'+'  + h ( q o ,  . . . , q b - ' ;  p k - l ) .  (A 15) 
;=0 

The usual presymplectic analysis can be performed in Pi'). In fact, there are sta- 
bilization algorithms for the dynamics of the intermediate spaces given by equation 
(2.1), and all the constraints in P, are obtained applying li, to all the constraints 
in P7+' [16, theorem 81. Indeed, this result holds at each step of the stabilization 
algorithm. 
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Appendix B. Auxiliary results 

First let us quote some relations that follow immediately from the preceding defini- 
tiOnS. 

From the commutation relation OE:~;: o y, = yv+l o a, one obtains, for 0 < 
r < s < k ,  

(B.9 
02k-1-r 

* k - l - r O Y r  = Y " O % , .  

Using L ~ ; ( W ~ . + ~ )  = wy we have, for 0 < r < s < k ,  

Q, = 'T(%) o R * o  T(%) (B.2) 

where T(aY8),  its transposed ' T ( a v s ) ,  and R, are regarded as vector P,-bundle 
morphisms. Similarly, 

d E , = ' T ( a , , ) o ( d E , o a , , )  (B.3) 

where d E ,  o apI is seen as a section of P, x ~ , ,  T (  P,)'. Similar conventions will be 
used without further reference. 

Lemma 1. Let 0 < r < k, and a tangent vector v y  E T,(P,). The local expression 
of 0,. vz - dE,(z) does not contain terms in the dp, (0  < j < r -  1) if and only 
if U= satisfies the condition of order r + 1 if r < k, of order k if r = k. 

Prw$ From the local expression of w7 (A.6) it is clear that if 

then 

Q, . = v'dp, + . . . + vI'-ldp,-, + t e r m s  in the  dqi 

Then just compute the local expression of d E ,  according to (A.8) and (A.15). 0 

Lemma 2. Let 0 < r < s < k and 2 < m < 2 k  - s. A tangent vector z)= E T,( P,) 
satisfies the mth-order condition if and only if T(  aT3)  . vz E Ter,(=]( P,) satisfies it 
also. 

F'roof. The condition T(oZ:i-') o T(y , ) .  uz = jm-' o 02'-'-' n,-l o y r ( z )  is seen to 
be equivalent to T ( o Z I : - ~ ) O T ( ~ ~ ) . ( T ( ~ , , )  . U , )  = jm-'~oZI:-30yI(ars(z)) 

0 

Let 0 < 1' < s < k. An element of I<er'T( era) whose local expression 

by decomposition of the projections from TZ"-'-'Q and use of (B.1). 

Lemma 3. 
does not contain terms in d p j  for 0 < j < s - 1 is zero. 

F'rooJ The form of such an element is therefore 2k-1-3  a,dq' .  But the coordi- 
nates q i  for 0 < i < 28-1  - - s  are invariant through a,,, thus ' T ( a , , ) ( C a i d q i )  = 

0 C a i d q '  = 0, therefore the coefficents ai are zero. 
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As a corollaly of this and lemma 1 we have: 

Lemma 4. Let 0 < T < s < k. If uz E T,( P a )  satisfies the condition of order s + 1 
if s < k, of order k if s = k, and moreover fT(a,,).  (0,. uz - dE, ( z ) )  = 0 ,  then 
Q, . vz = dE,(z). 

Finally, some results on the evolution operators will be needed. It is known that 
'T(a,)oR,+,oIi ,  = dE, = 'T(a,)odE,+, o a ,  for 0 < T < k. Indeed, a careful 
observation of the corresponding local expressions shows that Q,+,oK, = dE,+,oa, 
if T < k - 1. ?his proves, more generally, for 0 < T < s < k ,  

0, o I<,, = d E, o a,, . (B.4) 
7-L- --"..a. ....",..-...." 
iiic ICWN ar~.rugu,vua ig p6, tiieoieiii 4j b i  Krs b i k  kill~iiiig: 

Propmilion 7. 
field along a,, such that satisfies the 'presymplectic condition' 

(Characterization of Kr8). For 0 < T < s < k, IC,, is the only vector 

'T(a, ,)  o O8 o I<,, = dE, 

T(y , )  o IC,, = jZk - ' - '  07.-1 O % , s - 1 .  

(B.5) 

and the ' ( 2 k  + 1 - s)th-order condition' 

(B.6) 

Proof. These conditions are clearly consequence of those satisfied by Con- 
versely, let us rewrite the presymplectic condition as 'T(a, ,)  o (0, o IC,, - dE,  o 
av6)  = 0. Since the vectors image of I i , ,  satisfy the condition of order 2 k - s ,  which 
is > s + 1 if s < k, and equal to k if s = k, it follows from lemma 4 that Q, o JCr3 = 
dE,oa,,. By applying ' T ( a S - , )  we obtain fT(a , - l )oO,oIC, ,  = d E , - , o a , , - , ,  
which, together with the ( 2 k  + 1 - s)th-order condition, is the characterization of 
Ii,, = Iia-l o ar,s-l as a vector field along a,,, according to ( k 9 ) ,  (A.10). 0 
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