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Abstract. For a kth-order singular Lagrangian the presymplectic equation plus the differ-
ent ‘mih-order differential equation’ conditions that can be considered in the Lagrangian
space yield different dynamics which are studied. This leads to a new classification of
the constraints. This study is also performed in the ‘intermediate formalisms’ which
can be defined between the Lagrangian and the Hamiltonian ones; the corresponding
classification schemes are then related.

1. Introduction

This paper deals with the dynamics constructed from a higher-order singular La-
grangian function. In order to make the ideas clear, let us first explain the relevant
features of the first-order Lagrangian case.

For a first-order singalar Lagrangian L the Euler-Lagrange equations of motion
for a vector field X in the velocity space T'(Q) can be written as the couple of
equationst

iywy =~ dE; (1.1
(the presymplectic equation) and
T(og)e X = Idyg 1.2)

(the second-order condition). Therefore one can apply the machinery of the presym-
plectic formalism and in particular its stabilization algorithm [11] to the Lagrangian
formalism, introducing the second-order condition in a further step [10]. The first
step yields a submanifold P C T(Q) where the presymplectic equation has solution;
the second step results in a submanifold S C P and a vector field tangent to S,
which are a solution of the Euler-Lagrange equation. But such submanifold S is not
maximal, and, in contrast with the presymplectic constraint algorithm, its construction
from P is not algorithmic.

t The notation % means ‘equality on the submanifold S’ (Dirac’s weak equality). When we state a
property ooncerning a weak equality, it is understood to hold only at the points of S. Since § plays no

role in what follows it will be suppressed.
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An alternative approach which avoids this asymmetric situation can be followed
through the concept of vector field along a map. There exists a vector field K
along the Legendre’s transformation FL, such that the Euler-Lagrange equation is
equivalently written [12] within a single equation for X:

T(FL)e X =~ K. (L.3)

Then a stabilization procedure can be performed, following the lines of [13, 14), in

order to determine the (maximal) constraint submanifold and the dynamical fields

of the Lagrangian formalism. Moreover, this procedure is strongly related to the

Hamiltonian stabilization algorithm, since application of K (as a differential operator)

to the Hamiltonian constraints yields the Lagrangian constraints [2, 19].

In spite of this, the consideration of the single presymplectic equation (1.1) has a
certain interest. Indeed the constraints arising from it—the presymplectic constrainis—
obviously are constraints of the ‘full dynamics’ given by the equation of motion (1.3).
In general, when the second-order condition is added to the presymplectic equation
more constraints appear. Then, one can find a characterization of the presymplectic
constraints: they are just the FL-projectable constraints of the ‘full dynamics’ [18];
that is to say, they can be obtained as FL*(¢), where ¢ runs over the secondary
Hamiltonian constraints. Therefore the ‘non-presymplectic constraints’ are not FL-
projectable; indeed they appear when some arbitrary functions of the Hamiltonian
dynamics are determined through the stabilization algorithm [19].

Therefore the classification of the constraints upon their presymplectic or non-
presymplectic ‘origin’ gives a deeper insight on the structure of Lagrangian constraints.
Moreover, the knowledge of their projectability is useful when studying the existence
of Noether gauge transformations [15].

When a kth-order singular Lagrangian is considered the situation is more involved
because:

1. There appear k — 1 intermediate spaces P, 23 P, — ... P,_; "%’ P, between
those of Lagrangian (F;) and Hamiltonian (F,) formalisms, where og,. .., a;_,
are the ‘partial Ostrogradskii transformations’ [3, 16). All these spaces have their
own dynamics, which are given by vector fields K. along the maps o, ; if L is
singular, there are also the corresponding constraints and arbitrary functions [16].

2. If L is singular, then 2(k — r) different dynamics can be constructed depending
on the different ‘higher-order conditions’ to be considered in each space F,, for
0<rgk-1.

In this paper we define and study these different dynamics and obtain some re-
lations between the constraints depending upon their ‘origin’, that i to say, which
mth-order condition is required to obtain them. Generalizing the first-order La-
grangian case we find a relation between the ‘origin’ of the constraints and their
projectability through the partial Ostrogradskii transformations; (it is known that this
projectability is also related to the determination of arbitrary functions [16]).

To perform the analysis of the ‘mth-order dynamics’ we have also converted its two
equations into a single one of type (1.3), which is treated as a ‘linearly constrained
dynamical system’ of references [13, 14], whose machinery can be applied. These
papers deal geometrically with a general type of singular differential equations, which
includes all the constrained systems deduced from singular Lagrangians.

This work relies on our paper [16] where some geometric structures and dynamics
for higher-order Lagrangians have been defined. We follow the notations and con-
ventions in this paper. Some of our previous resuits and notation can be found in
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appendix A. On the other hand the proofs of section 3 are somewhat involved, so
we have collected some auxiliary results in appendix B, in order to make the paper
more readable.

We also assume a basic knowledge on vector bundles [1, 9], vector ficlds and
sections along maps [4) (see also [6, 12]) and higher-order tangent bundles [20, 22]
(see also [8, 17, 21], where higher-order Lagrangians are studied).

The paper is organized as follows. Section 2 contains the definition of the mth-
order dynamics in the intermediate spaces. This dynamics is formulated into a single
equation in section 3, from which some relations between the different constraints
are obtained in section 4. In section 5 we discuss four examples which show different
possibilities for the structure of constraints, and we compute which ‘order condition’
is needed to obtain them. Section 6 is devoted to conclusions, and finally there are
two appendices with previous and auxiliary results.

2. Dynamics with the mth-order condition

Let us recall that our notations and previous results are explained in appendix A.
The equation of motion for a vector field X, in P, (0 £ r < k—1) 8 [16, theo-
rem 6]

T(a,)o X, ~ K. 2.1)

This is an equation both for the submanifolds § C P, where the motion can take
place and the vector fields X, on P, which are tangent o S.

The integral curves of X correspond to solutions of the Euler-Lagrange equa-
tion and therefore the coefficients of 8/8¢°%,...,8/8¢* 2" in X, are perfectly
determined: ¢!, ..., g**~1=7. Thus, this vector field satisfies the {2k — r)th-order

condition, which can be written

T(o35T) o T(v,) 0 X, = j* oy, 22)
Indeed, the equation of motion (2.1) is equivalent to this condition together with the
presymplectic equation

[ 9 Y
ab,. O /A

m~ A B Fe et
r bt A \Led J

r = T

As done with first-order Lagrangians one may consider the presymplectic equation
only and perform the presymplectic analysis on it [17]. For a regular Lagrangian the
presymplectic equation already implies the (2k — r)th-order condition [16, proposi-
tion 7], but for a singular Lagrangian this result is no longer true, However:

Proposition 1. The presymplectic equation (2.3) in P, (0 < r € k — 1) implies the
{r + 1)th-order condition for X .

Proof. This is a consequence of lemma 1 in appendix B. O
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Thus we are faced, for r 4+ 1 € m € 2k — r, to the study of the mith-order
dynamics in the intermediate space P.: its solutions are the vector fields X, in P,

T

satisfying the presymplectic equation (2.3) and the mth-order condition

T(OZk-l—r) DT('TT) o Xr ~ m—2 O2k—1—r 0, (2.4)

m=2 maw]

In general, these 2(k — r) dynamics are not equivalent. The cases m = 2k —r, 741
correspond 1o single equations (2.1) and (2.3), respectively.

In references [13, 14] a unified framework has been presented to deal with various
constrained systems. We shall show in the following section that this framework also
includes the mth-order dynamical formalisms just defined, which can be formulated
within a unique equation instead of two.

Let us finally remark that for the Hamiltonian space P, the maximal order that
can be considered is kth, and the presymplectic equation on the primary constraint

submanifold P,EU) already implies it.
3. Equations of motion for the mmth-order dynamics

Praposition 2. The equations of motion of the mth-order dynamics, for 2k - r >
m 2 k + 1, are equivalent to

T(ar,2k+1—m) o X'r = I"r,2k+1—m' (31)

Proof. The equation considered implies (2.3) and (2.4):

Q,,,. o XT‘ = tT(ar,2k+l—m) Q Q2k+1—m Q T(ar,2k+l—m) ° XT‘
9}

Qo .. oK ...
TLIR+1—mM TTrEKT LT

= tT(ar,2k+1—m) © Q2!s:+1—m © T(ar+1,2k+1—m) o I\-r
=1T(a,)o0Q,,, 0 K,
=dE_

where (B.2), (3.1), definition of K _, (A.14) and proposition 7 (appendix B) have
been used; and

T(o2 23 o T(7,) 0 X, = T(vappiom) @ T(@ pp1om) 0 X,

m-—2

=~ T(72k+1—m) 0 K\ 2ktp1-m

-2

=12 - O Yok—m ©C Crok—m
- im-2 2k-1-r
=7 oom—l O‘YT‘

where (B.1), (3.1) and proposition 7 have been used.
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Conversely, if X, satisfies (2.3) and (2.4) then (3.1) holds. To this end the char-
acterization in proposition 7 is used to show that T(o, 5p41-m) 0 X, 88 K, 5041-m
(on a certain submanifold}:

t'I‘(a'r,Zk+1—m) o Q’2k+1—m © (T(ar,2k+1——m) @ Xr) = Qr o Xr
~dE,

T('¥2k+1—m) ° (T(ar,2k+l—m) o X,)= T(Oznli:é_r) o T(y,)o X,

-2 2k—1—-7
SF T i R

_ m-—2
=1 OYok—m @ Xr2kem

where we have used (B.2), (2.3), (B.1) and (2.4). O

Proposition 3. The equations of motion of the mth-order dynamics, for £ 2 m 2
r 4+ 1, are equivalent to

Qoo Tlapmoy e X, xdE, oo, 4. (3.2)

Proof. This equation implies (2.3):

Qr er = tT(dr,m—l) eg?'m—l oT(Qr,m-—l) OXT
= tT(ar,m—IJ o dEm—l o c1[1",1%—1

=dE,

where (B.2), (3.2) and (B.3} have been used. On the other hand, by lemma 1,
T(c, m-y) o X, satisfies the mth-order condition. Then, by lemma 2, X, also
satisfies the mth-order condition.

Conversely, let us deduce relation (3.2) from the equations of motion of the
mth-order dynamics. First notice that, for m = r 4+ 1, (3.2) is nothing but the
presymplectic equation. Therefore only the case m > r 4 2 is to be considered.
From the presymplectic equation one has, using (B.2} and (B.3),

“T(pm) 0 (Rt 0 T(@rm1) © Xy — A By 0y gy y) 20,

Since X, satisfies the mth-order condition, T(c, ., _,) o X, also satisfies it. By
lemma 4 the expression in parentheses is zero, and this is equation (3.2). a

Theorem 1. For each intermediate space P. (0 < » € k—1) and integer m (r+1 <
m € 2k — r) there exist a vector bundle n. : F.  — P., a morphism of vector
P _-bundles A, : T(FP,) — F,,,and a section o..,, of F,_, such that the equations
of motion (2.3) and (2.4) for a vector field with the mth-order dynamics in P, are

equivalent to the single equation

A'r'm o X?’ =~ G-Tm * (3'3)
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The same is true for the Hamilonian formalism considering m = k and the corre-
sponding vector bundles on the base P,E” = oy _y{ Py_q), provided it is a submanifold
of P, and the Hamiltonian formalism can be defined on it.

The various dynamics of P, are naturally related by P,.-morphisms F, .,
F,(r+l1gmg2k=-1-r).

The various dynamics with the mth-order condition are naturally related by P,-
isomorphisms F,, — P, x, F,., . (where 0 < r < min{m —2,2k—1~m} if
m#FEkOLrgk~1ifm=k),

These morphisms yield the following commutative diagrams:

—_—

A
T(F,) By Al £

r+1)—’-+'1‘"‘Fr+1 m

T{er
Pria

/
F.

Proof. Tt2k—r2m=k+1put

Frm

F‘l"m = P"‘ xClq-_-zgqq__,,, T(P2k+l-—m) (3.40)
Arm - T(ar,2k+}.—m) (34b)
Trm = R’T.Zk-}-l—-m (346)
andifk2m2r+41 put
Fom = Poxg,  T(Py_1 ) (3.5a)
Arm = Qm«-l o T( f',m-l) (3.5b)
= 1T(am—1,k) o0 T(a, ;)
Trm =dEm—1°a-r-,m—: (356)
m>=T+1 tT((lm_l'k) a0 Ky

where A, is regarded as a morphism of vector P.-bundles T(P,) — F,,, and o,
as a section of F, . Thus, according to the preceding propositions, the equations
of motion for the mth-order dynamics are equivalent to (3.3). It is clear that the
various dynamics in P, are related by morphisms between the vector P,-bundles

T(P) P T TR Fr,f-{-i:

T(ap [ PRY
T(P) TS P ox, T(P) ") . = Pox,, T(P)
o “T{oyss “T{a)
éPT xarkT(Pk)*—‘-“ 1{1‘+)Pr xarT(Pr-H) T(P.)"
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since their compositions yield the A, and they transform the corresponding sec-
tions o,.

On the other hand, since the vector bundle F,, is the inverse image by partial
Ostrogadskii transformations of a vector bundle depending on m and not on r, and
the spaces P, are related throuph the partial Ostrogadskii transformations, there are
natural isomorphisms £, — P, x, F,. ..

The particular statements concerning the Hamiltonian formalism (where r =
m = k) can be eastly checked. O

The data (F,,F, ,, FprpsArms T ) CONStitute a finearly constrained system
[13, 14], whose equation of motion (for a vector field) is (3.3).

4. Relations between the constraints

The morphisms relating the various dynamics imply the following results (see also
[13, 14]). Let S, C P, be the final constraint submanifold of the mth-order dynamics
in P,; that is to say, the subset of P,, assumed to be a closed submanifold, of points
by which there pass solutions of the equation of motion. Let C',, C C*(P,.) be the
ideal of functions vanishing on 5_ . Then:

Proposition 4. If £, 8 a path in P, solution of the (m + 1)th-order dynamics,
then it is a solution of the mth-order dynamics. Therefore, S, ... C 5,,, and
Crm - C’r,m.+1‘
This result was expected since the (+n+1)th-order dynamics is a restriction of that
of mth-order. The proof is similar but simpler than that of the following proposition.
Now let CPfol := C,,. Nal(C*®(P,.,,)) be the subset of o, -projectable con-
straints of C, .

Proposition 5. Let £, be a path in F,, and let {,,, = «, 0§, be the corresponding
path in P, ,. Then &, is a solution of the mth-order dynamics if and only if £,
8. Therefore, a, (S,.,,) C S, and o7 (C ., ) C O

Proof. Suppose that £, is a solution. With the notations in the theorem, its second
commutative diagram yields

Argim @€ = Arpim 0 T, ) 04,
= Trp1,m OOy ofr

= Tri1m @ §ria

Similarly one shows that if £, ., is a solution then £.. is, using the linear isomorphisms
Frm,.‘c - Fr+1,m,:v'

Then the relations between the final constraint submanifolds and the ideals of
constraints are easily deduced. 0
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In fact the relations between the constraint submanifolds are frue at each level of

the stabilization algorithms of these dynamics [14).
The following diagram shows all the relations established between the constraints:

proj
C‘r,r-}- 1 D Cr,r-{- 1

N n
proj af
Crryz 2 rrtz 2 (Crprge) Gy,
n M

n N

Com 2 CFR 2 oi(Crum) —  Coym

n n N n

proj - o
C‘r‘,2k—r—}. 3 Cr.?k—r—l 2 ar(cr+1,2k—r—1) Cr+1,2k—r-—1
M
Cr‘,2k—r

Proposition 5 can be improved under additional hypotheses:

Proposition 6. Assume moreover that Srp1,m C o.(P.) C P,y are closed sub-
manifolds. Then a;1(S, ,; ,.) = S, o (S,n) = S,y1.m and C,  is the ideal
generated by o) (C

r+1|m)'

Proof. The inclusion o;'(S.,, .} D §,, is already known. Now let = €
;' (S,41,m)» and £ ., a solution passing by =’ = o,(z). There is a path ¢,
passing by x such that £, , = «, 0 ,. By proposition 5, £, is a solution of the
mth-order dynamics, thus = € S, . The same argument proves the second equality.
Finally, the relation between the constraints follows from the relation between the
submanifolds. a

Therefore, in the row corresponding to the mth-order dynamics in the preceding
diagram the horizontal inclusions are equalities. Let us call presymplectic consiraints of
P, the constraints arising from the presymplectic equation; therefore, those in C, , ;.
Using proposition 4 we conclude that:

Corollary. 1f 5., .,» C o, (P,) (in other words, the constraints defining o ( P,) C
P, ,, are presymplectic constraints) then the conclusions of proposition 6 hold for
each m. In particular, the pull-back through o, of all the constraints in P,
(C,41,2k-r-1) generates C,,, . _,; and the pull-back through e of the presymplec-
tic constraints in P, (C,,, ,,,) generates C, ., thus it may include presymplectic

and non-presymplectic constraints.

Now all the horizontal inclusions in the preceding diagram are equalities.

Notice that the hypothesis in the corollary does not hold in general. The primary
constraints appearing by the compatibility condition of the equation of motion (2.1)
are those defining the submanifold «,.(P._,) C P, [16, proposition 9]. On the
other hand, using that KerT(ca,.) C Ker,, it can be shown that the primary
constraints appearing by the compatibility condition of the presymplectic equation
(23) are x¥ := I'}, . E_, where the vector fields I',, constitute, in addition to a
frame of Ker T(a,.), a frame for Ker Q..
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5. Examples

Here we consider four second-order singular Lagrangians and perform the constraint
analysis in the spaces P, = T3Q (Lagrangian formalism), P, (intermediate formal-
ism), and P, = T(TQ)* (Hamiltonian formalism), considering also the different
order conditions that can be imposed on each space. The first example is done in
more detail. The procedure followed is similar to that of {18] for first-order La-
grangians.

Of course, if only the maximal-order condition is to be considered then the results
of [16] can be applied. Indeed, it is easily checked that if the Dirac Hamiltonian
analysis is first performed and the intermediate evolution operators K, and K are
applied to the Hamiltonian constraints, then ali the constraints (of the maximal-order
dynamics) are obtained as given in the examples.

We want to point out that all the examples satisfy the conclusion of the corollary
to proposition 6 for » = 0, but the third one does not satisfy its hypothesis. We do
not know whether this hypothesis can be weakened.

Example 1. L(z°, 2!, 2?) = Jalzl.

{a) I_agranglan formalism (in Fy). We need w, = dz° Adz! and E, = 1zlez!. Lett
X, = A%+ ...+ A%9, be the dynamical field, with A*(2?,. .., 3) functions. The
prlimalry constraints are obtained by TeqUITING iy wpy ™ dEo, ie., A%z — Aldx®
zldax’.

(i) Presymplectic equation. It determines A° = z! and A! = 0, therefore there are
no constraints and the dynamical field is X, = z!8, + A%8, + A%9,.

(ii) Second-order dynamics. We previously set A° = !, but this is already satisfied
by the solutions of the presymplectic equation. Therefore there are no constraints
and still X, = 218, + A%9, + A%8,.

(iii) Third-order dynamics. Now the dynamical field is looked for in the form X, =
x18, + 228, + A8, + A%d,. Equation iy w, = d £, implies that z*> ~ 0. In
other words, ¢} = x? is the primary constrain: and the dynamical field is X, ~
'8, + A?8, + A%8,. The stability of this constraint imposes X - ¢f ~ A% ~ 0,
which determines X, ~ =!8, + A33 and no more constraints.

(iv) Full dynamics. We first set Xy = 2'8, + ... + x¥8, + A?8;. Equation iy w, =~
d E, produces the primary constraint qbl = z2. Its stability is the secondary
constraint ¢t = X, o} = =3, and the stability of ¢ only determines X,
¢% ~ A% ~ 0. Therefore no more constraints appear and the dynamical field is
X, ~ z'8,.

(b) Intermediate formalism (in P;). The partial Ostrogadskii transformation
ag: Py — P, is defined by p, = «! (which will be the primary constraint of the
full dynamics), and w, = dz® Adp, and E, = (p, — 3z*)a'.

Let X, = A3, + A8, + A8, + ;8" be the dynamical field. The primary
constraints are obtained by requiring iy w, =~ dE,, ie., Agdpy — Cydz® = zldp, +
(po — =)z,

i) Presymplecuc equatlon It is known that AO ~ x!, Moreover, C, = 0 and
@l = I - p[] ib I.HC pllllldly Wllalldllll J‘UW Xl it vl,l(.}'u + Alal '1"" A232
Imposing the stability of ¢} leads to X - ¢} = A' ~ 0, which finally determines
X, =218y + A%8,.

t We put 8; = 8/9z* and & = 8/dp,.
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(ii) Full dynamics Now X, = =!8, + %8, + A28, + C,;8°, and also C, = 0 and
qSl = ¢! - p, ~ 0. The stablhty of @] is the secondary constraint ¢? = X, - ¢} =
% whose stability determines A% ~ 0 and the dynamical field X, ~ z'3,.

(c) Hamiltonian formalism (in P,). The partial Ostrogadskii transformation «,: P, —
P, is defined by $, = 0, which gives the primary Hamiltonian constraint ¢} = p,.
Now E, = H ~ (p, — 3z'}x!, which gives a secondary constraint ¢3 = ! — p,
already stable. The dynamics is given by X, = z'8,.

Notice that the Hamiltonian constraints are second class. Since one of them is
primary, the secondary comstraint ¢? of P, i not «,-projectable [16], and therefore
it was expected to be non-presymplectic. The same applies to @i On the other
hand, as said before, we have K, - ¢} = ¢}, and K, ¢} = ¢}; this also holds in the
foliowing exampies.

To summarize, we have the following scheme, where the arrows denote pull-back
through partial Ostrogadskii transformations:

1!‘
|

o & g

| ¢ —1— ¢

4th 3

Py P P

In the following cxamples we only give the constrainis of the full—maximal-order
condition—dynamics, and thelr classification like in the preceding example.

Example 2. L(z%z', 2%,y v, y?) = L222% + 22y° [5].

(2) Lagrangian formalism: We now look for a dynamical field X p = A° 810 + . +
A%8. 5+ B8 4+ ...+ B®3,; The constraints are ¢ = —z?, ¢f = —z°, q&o = y?
and ¢f = v

(b) Intermediate formalism: ¢! = —p,q, ¢7 = —27%, ¢} = y' + p,o and ¢} = y*.
(c) Hamiltonian formalism: ¢} = p,;, 3 = —p,q, 43 = y° ~p,, and @3 = y' +pyy.

Here all the Hamiltonian constraints are also second class, and then one ‘maximal-
order’ constraint in P and P_ is mmm‘red The result is;

18t ¢$

N 1

¢|, -1 d"z
| 4 R ;
M| ¢ —— 4

41]\ ¢g
FPo Py Py
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Example 3. L{z°, z',z%,4% 41, 4% = z1y°

(a) Lagrangian formalism: ¢} = z® and ¥} = y°.
(b) Intermediate formalism: ¢} = z2 4 p,q and ¥ = y? — p,.
(c} Hamiltonian formalism: ¢} = z' — p,, and ¥} = p,;.

As said before one finds here that the presymplectic equation in P, and P, does
not produce any constraint. Both primary Hamiltonian constraints are second class;
therefore projectable constraints are not expected. This is true since the constraints
of Py and P, arise only from the maximal-order condition:

gnd 'ﬁ; ’J'; |
3 ¢

Py P Py

Example 4. L(z°, 2!, 2?) = 22

{(a) Lagrangian formalism: There are no Lagrangian constraints.
(b) Intermediate formalism: The only constraint is ¢} = p,.
(¢) Hamiltonian formalism: ¢} = 1 —p, and ¢ = p,.

Since the two Hamiltonian constraints are first class the secondary one gives through
«f the only constraint in P, which is presymplectic:

lnt
@
2nd ¢} —l a2
3l‘d
4lh
Fo By P

6. Conclusions

We have studied the dynamics in the Lagrangian, Hamiltonian and, in general, inter-
mediate formalisms in the framework introduced in [16] for higher-order Lagrangians.
These dynamics are constructed depending on which ‘mith-order differential equation’
condition is required; for singular Lagrangians there appear different dynamics and a
new classification scheme of the constraints is thus obtained.

We have shown that all the dynamics herein defined have an intrinsic formulation
by means of a single equation. This approach eases to relate the classification of the
constraints with their projectability through the partial Ostrogradskii transformations.
This is a clear way to show how the constraints appear in the formalism according
to some specific dynamical requirements. The best result is obtained under some
hypotheses (proposition 6); then the pull-backs (through partial Ostrogradskii trans-
formations) of the mth-order constraints are just the mth-order constraints, and the
non-projectable constraints are just those arising from the highest-order condition
that can be considered.
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These refinement in the classification of constraints in higher-order theories could
be useful—as they are in the first-order case—in the obtention of Lagrangian gauge
transformations.
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Appendix A, Previous results

We consider an n-dimensional differentiable manifold Q with coordinatest ¢ =
g°, and its higher-order tangent bundles T7(, with natural coordinates (¢°,...,g")
A kth-order Lagrangian is a function L € C®({T*Q). The Jacobi-Ostrogradskii
momenta are

Here we present some previous results and notation from reference [16].

k—i—1
. o oaviag 8L P ' P
Bi= . (-1)d} 5T ) 0<i<k—1 (A.D)
j=0
and satisfy
R 8L .
Pi1 = g&?"dTPi (A-2)

where dp = 57, ¢it1 /8¢,

The intermediate space P. (0 < r € k) can be defined, with coordinates
(¢ .. g " py, .. ypry). Then Py ~ T2%-1Q and P, ~ T"(T*1Q). We
set v,.: P, — T2¥-1-7(Q for the natural projection.

A tangent vector v, € T_(F,) satisfies the mih-order condition if its projection
to T?*-1-7() satisfies it. That is to say,

T(o*X 2 o T(v,) vy = ™ 20 0% 170, (x) (A.3)

where o3: T*Q — T!Q is the canonical projection and j°: T*+!Q — T(T*Q) is the
canonical embedding.

The partiai Ostrogradskii transformations «,: P, — P, can be introduced, with
local expression

2k-1-r. k2

a.(q,....q iPor-- o Pre1) = (@%@ T D el By). (A)

For 0 € r € s < k we also use a,,: . — P,, defined as the composition

o, i=a, 0. 0. (A.5)

The ‘total’ Legendre-Ostrogradskii transformation is therefore FL = og: By — P

1 Indices of coordinates are always suppressed.
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With o, we construct the exact 2-form w, := o, (w), where w = w, is the
canonical symplectic form of T*(T*~1Q). Its local expression is

w,=dg® Adpy+ ... +dg" ' Adp,_; +d¢" Adp, + ... +d¢¥ L AdpL., (A6)
and by inner contraction it defines a morphism of vector bundles

2,:T(F,) —>T(P )" (A7)

On the other hand, in P, (0 < — 1) there is the energy function ., locally
given by

E (% P ) = Pod' 4.4 P @+ B0 o+ By qt = L(d%s 05D

(A-8)

We have E, = o (E, ;).
Now we consider the intermediate evolution operator K, which is the only vector

LT T PR iy LI TP | DL I | PESRG ¢ [ G IRy | 1
LCh alung e, sallsiyllg LUIC 10HUWINE W0 LUNUIIVILS |10, UIWOICIE 4.

T(Vpqr)o K, = 7 "o, (A.9)
o (iKrer) = ‘T(a,)oQ,Hoh’r:dEr. (A.10)
In coordinates it reads
} a T o
K,=qdgmt -+ T gmmrt

oL\ @ oL & arL 9
NEATIN D (2, )2
(89") 8p, (Bq p") ap, aq" ') Bp,

(A11)
It is a differential operator on the functions in P,
K. -f:={dfoa_ K. (A.12)
The different evolution operators are connected by
T(a, )oK, =K, o, _;. (A13)
Then for 0 € r < s < kwe define K, : P, — T(P,} by
K,,i=K, joo,, 1 =T(e, )0 K,. (A.14)

It is a vector field along ., and therefore it is identified with a section of P, x
T(P,).

It is assumed that the o, have the same constant rank 24&n —m and that Pﬁ)l =
a,{P,) is a closed submanifold of P, , locally defined by m independent primary

constraints ¢¥,,. The primary Hamiltonian constraints—those defining P,El)—can be
chosen to not depend on pu, «++sPp_o Then the primary constraints of F,. can be
obtained Uy applying K, to the primary constraints of P r+1 [16, proposition 9).
There is a (local) Hamlltoman function in P,, which can be chosen of the partic-
vlar form
k=2
H=Ek=zpiqi“+h(q0a---»qk_l§Pk-1)- (A.15)
i=0
The usual presymplectic analysis can be performed in P,E”. In fact, there are sta-
bilization algorithms for the dynamics of the intermediate spaces given by equation
(2.1), and afl the constraints in P, are obtained applying K, to all the constraints
in P,,, [16, theorem 8]. Indeed, this result holds at each step of the stabilization
algorithm.
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Appendix B. Auxiliary results

First let us quote some relations that follow immediately from the preceding defini-
tions.

From the commutation relation 0%;-}=" 0 v, = ~,,, o a, one obtains, for 0 <
rgsgk,
2k—1—
O%k—1-5 O Vr = ¥ © Cpye (B.1)

Using o} (w,,,) = w, we have, for 0 < r < s < k,
Q. ='T(a,,) 00,0 T(a,,) (B.2)

where T(a,,), its transposed ‘T(c,,), and §2, arc regarded as vector P,-bundle
morphisms. Similarly,

dE, ='T(a,,)o(dE, 0a,,) (B.3)

where d £, o v, is seen as a section of P, x, T(/F,)". Similar conventions will be
used without further reference.

Lemmma 1. Let 0 < r < k, and a tangent vector v, € T_( P,). The local expression
of Q, v, —dE, () does not contain terms in the dp; (0 < j < r—1) if and only
if v, satisfies the condition of order r+ 1 if » < k, of order k if r = &,

FProof. From the local expression of w, (A.6) it is clear that if

2k—1-r r—1 5
o= Y v S
i=0 aqi j=0 ap.?

then

Q, v, =v%py,+ ...+ v 'dp,_, + terms in the dg'.
Then just compute the local expression of d E, according to (A.8) and (A.15). O
Lemma 2. let0gr<s<kand 2 < m < 2k— s A tangent vector v, € T (F,)

satisfies the rnth-order condition if and only if T(a,,) v, €T ( P,) satisfies it
also.

a e (¥F)

Proof. The condition T(02¥~1"") 0 T(7,) v, = 7™ 200 2}~ o~, (x) is seen to
r a J T

m—2 m-—1
be equivalent to T(oi‘t:%_’) oT(v,) (T{a.,) v,)=j" %0 ozn'g:i"" o, (o, (z))
by decomposition of the projections from T?*~!-7Q and use of (B.1). O

Lemma 3. Let 0 € r € s € k. An clement of Ker*T(«,,) whose local expression
does not contain terms in dp; for 0 < 7 < s—1 is zero.

Proof. The form of such an element is therefore Z?:U"_S a;dq'. But the coordi-
nates q* for 0 < ¢ € 2k—1— s are invariant through a,,, thus "T(a, (Y a;dg’) =
3. a;dq' = 0, therefore the coefficents a; are zero. 0O
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As a corollary of this and lemma 1 we have:

Lemma 4. 1let 0 r<s <k Ifv, €T, (P,) satisfics the condition of order s +1
if s < k, of order k if s = k, and moreover 'T(e,,) (Q, v, —dE, (z)) =0, then
Q,-v, =dE,(x).

Finally, some results on the evolution operators will be needed. It is known that
"T(a,) o,y 0 K, =dE, =*T(a,)odE  oa, for 0 < < k. Indeed, a careful
observation of the corresponding local expressions shows that Q. ,0 K =dE, ,0a,
if r < k— 1. This proves, more generally, for 0 < r < s < £k,

Q,0K,, =dE,oa,,. (B.4)

MThn sanc-ds noanlmnnaan ME£ tbhnmon—s A1 fnw L7 2 L

Proposition 7. (Characterization of K _,). For 0 € r < s € k, K, 1s the only vector
field along ., such that satisfies the ‘presymp]ectlc condltlon

"T(a,,)o0Q, 0, =dE, (B.5)
and the ‘(2k + 1 — s)th-order condition’

T(y,)oK,, =i* 1"%0~,_ ,0a,, - (B.6)

rs—1

FProof. These conditions are clearly consequence of those satisfied by K,_,. Con-
versely, let us rewrite the presymplectic condition as 'T(a,,)o (2,0 K,, —dE, o
a,,) = 0. Since the vectors image of A, satisfy the condition of order 2k — s, which
is >s+1if s < k,and equal to kif s = k, it follows from lemma 4 that Q o K_ =
dE oa,,. By applying 'T(«,_,) we obtain 'T(a,_,)oQ,0 K, =dE,_ o ,_,
which, together with the (2k + 1 — s)th-order condition, is the characterization of
K,=K, joca,, ;asavecor field along o, according to (A.9), (A.10). g

Tar
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